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Escape cascades as a behavioral contagion process with adaptive network dynamics
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The spread of behavior in collective evasion of mobile animal groups can be predicted by reconstructing
quantitative interaction networks. Based on the assumption of time scale separation between a fast contagion
process and a slower movement response, the underlying interaction networks have been previously assumed
to be static, determined by the spatial structure at the onset of the collective escape response. This idealization
does not account for the temporal evolution of the spatial network structure, which may have a major impact on
the behavioral contagion dynamics. Here, we propose a spatially explicit, agent-based model for the coupling
between behavioral contagion and the network dynamics originating from the spreading movement response. We
explore the impact of movement parameters (startle speed, initial directionality, and directional noise) on average
cascade size. By conducting numerical simulations for different density levels, we show that increasing escape
speed suppresses the cascade size in most cases, that the cascade size depends strongly on the movement direction
of the initially startled individual, and that large variability in the direction of individual escape movements
(rotational noise) will typically promote the spread of behavioral contagion through spatial groups. Our work
highlights the importance of accounting for movement dynamics in behavioral contagion, and facilitates our
understanding of rapid coordinated response and collective information processing in animal groups.
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I. INTRODUCTION

Collective behavior can be observed in a wide range of bi-
ological and social systems [1,2], ranging from animal groups
(e.g., bird flocks [3], fish schools [4], sheep herds [5], and
insect swarms [6]) to human societies (e.g., crowd evacuation
[7], group decision making [8], and social activity patterns
[9,10]). In general, complex collective behaviors emerge in a
self-organized way from the interplay of various factors, such
as individual-level perception and information processing,
and the interactions between individuals within the collec-
tive [11,12]. Collective evasion maneuvers in mobile animals
represent a special type of collective dynamical behavior,
manifesting itself via the fast spread of individual escape
reactions through the collective [13,14]. While being biolog-
ically highly relevant, this behavior is also comparably easy
to quantify experimentally due to the typically clearly identi-
fiable, stereotypical escape movements. The research related
to such behavioral cascades, which can be considered a form
of collective information processing, has been attracting con-
siderable interest in recent years [4,13–16]. In particular, local
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and fast changes in the state of an initially startled individual
(e.g., a reflexive behavior to quickly move away from danger
in response to light, sound, or predator stimuli) give rise to
similar behaviors in surrounding neighbors, and the escape
waves caused by behavioral contagion can propagate across
the group [13,17]. This instability towards sudden behavioral
changes has been confirmed to be an inherent property of
mobile groups, which can be beneficial for optimizing their
collective access to environmental information and promoting
the rapid transmission of directional information [18].

To move beyond a descriptive understanding of the social
transmission of behavioral contagion in collective evasion ma-
neuvers, several studies have adopted computational models
to reproduce experimental observations and predict behav-
ioral cascades. The fundamental nature of social contagion
in schooling fish was successfully revealed by reconstructing
interaction networks of behavioral propagation based on the
sensory information, making it possible to predict the magni-
tude of behavioral cascades across groups before they occur
[13]. Further, a modeling approach based on a generalized
(complex) contagion model [19,20] was developed to demon-
strate that average cascades strongly depend on changes in
spatial positioning rather than changes in individual respon-
siveness [21]. Using a similar susceptible-infected-recovered
(SIR) type model for behavioral contagion, it has been shown
that groups can manage a trade-off between sensitivity and
robustness in collective information processing according to
the riskiness and noisiness of the environment [17]. In the
above studies the interaction network has been assumed static,
determined by the spatial structure at the onset of the first
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escape response. This assumption can be justified by the time
scale separation between the fast contagion process and the
comparably slow individual movements. The assumption is
reasonable in particular at the early stages of the spreading
process, and thus predicts well smaller cascades with shorter
duration as typically observed in laboratory experiments [17].
However, the individual escape movements triggered by the
spreading startle response may strongly alter the spatial net-
work structure. This leads to changes in the visual information
captured by neighboring individuals, which in turn feeds back
into the further spreading of behavioral cascades [22]. There-
fore the static network approximation becomes questionable
in particular for larger cascades with longer duration, during
which significant rearrangements of the spatial structure take
place. Thus, in order to fully understand the collective escape
response, it becomes important to explicitly account for the
feedback between the contagion process and the dynamic
network structure.

Here, we investigate how movement responses spreading
in groups via a contagion process feed back on the contagion
dynamics itself using an individual-based model in two spatial
dimensions. While our work has been directly inspired by
escape cascades in fish schools, it is of general relevance for
all systems where the contagion process triggers individual
movement responses, which in turn affects the interaction
network. Note, that a model recently proposed by Levis et al.
[23] considers also the interplay of a susceptible-infected-
susceptible (SIS) epidemic process and collective movement.
However, besides considering a simpler contagion process,
the work focuses on flocking dynamics, where agents are per-
manently moving and the infections spread a desired direction
of motion, and do not induce the movement response itself as
considered here.

Deviating from previously considered models of escape
cascades [17,21], we propose a coupling model that consid-
ers the behavioral cascades spreading on top of individual
movements to fully capture key motion characteristics during
the contagion process. Our simulation results indicate that the
propagation range of behavioral cascades depends strongly on
the specific properties of each movement parameter. It can
be observed that a relatively slow constant speed, an initial
movement direction towards the group’s center of mass, and a
higher intensity of the rotational noise will facilitate the spread
of behavioral contagion through spatial groups. By comparing
the contagion dynamics at different density levels, we find
that there are also differences in the impact of different move-
ment parameters on the cascade size depending on the group
density. In summary, this work emphasizes that the complete
spatio-temporal dynamics of interaction networks for behav-
ioral contagion should be considered, for an encompassing
understanding of information propagation in dynamical, spa-
tially embedded groups.

II. RESULTS

A. Contagion model with movement response

We consider a system of N agents, e.g., individuals in
fish school, which are represented by nodes in an inter-
action network. They can be in one of three states Si(t ):

susceptible, active, and recovered. The behavioral contagion
model part corresponds to a continuous-time variant of the
Dodds and Watts model [19] introduced in Ref. [21]. The
process of behavioral contagion can be described as below: A
susceptible individual i receives stochastic doses of activation
signal of magnitude da from an active neighbor j (note that
neighbors are determined by visual networks [14]) at a rate
ri j = rmaxwi j , which is proportional to the link weight wi j

in the interaction network, and rmax is the maximum rate of
sending activation doses for wi j = 1. For individual i, the
stochastic time series of activation signal receiving from an
active neighbor j is given by

di j (t ) =
{

da, pa

0, 1 − pa
, (1)

where pa = ri j�t is the probability of receiving an activation
dose within a short time step �t . From this, the cumulative
dose Di(t ) is updated by integrating its recent memory in the
form of exponential decay:

dDi(t )

dt
= −δDi(t − �t ) + 1

�t

∑
j

di j (t ), (2)

where δ is a discount factor. By using a standard Euler dis-
cretization, Eq. (2) can be rewritten as follows:

Di(t ) = (1 − δ�t )Di(t − �t ) +
∑

j

di j (t ). (3)

If the cumulative dose Di(t ) exceeds the internal response
threshold θ of individuals, it will enter the active state and
start performing an escape movement with a constant speed
v0 in the direction �ei, copying the movement direction of its
active neighbors with directional noise:

�ei = 〈�e j〉 j + �σi

‖〈�e j〉 j + �σi‖ . (4)

Here, 〈�e j〉 j stands for the normalized average direction of
active neighbors j, �σi = σ0 · (cos η, sin η) represents the rota-
tional noise, where σ0 is the noise intensity, and η is a random
number taken from a uniform distribution U (0, 2π ). After a
fixed activation time τact, individual i will change its state from
active to recovered and stop until the end of the simulation.
For a visualization of the behavioral contagion and network
updates, please see the model schematic in Fig. 1.

B. Construction of interaction networks

The model of the interaction network Ai j = (wi j )n×n, by
which the escape behavior propagates across groups, has been
derived from empirical data, based on the behavior of first re-
sponders after an initial, spontaneous startle [13,17,21]. This
has been achieved by analyzing a series of relative features of
the initially startled individual from the perspective of the re-
sponder. It has been shown that in a logistic regression model
the most predictive feature of the behavioral response was the
logarithm of the metric distance. The second most predictive
feature was the ranked angular area of the initially startled
individual occupied on the field of vision of the respond-
ing individual, with a much weaker contribution (smaller
coefficient).
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FIG. 1. Schematic of the contagion model with movement re-
sponse. The focal individual in the susceptible state (S, gray) receives
activation signals from active neighbors in the infected state (I, red).
The cumulative dose is below the response threshold at time t1.
The individual remains in the susceptible state and stays in place.
As its active neighbors keep moving, their influence (link weight)
changes, e.g., for closer neighbors it becomes stronger. Eventually,
the cumulative dose reaches the response threshold at time t2, and
the focal individual transitions to the infected state and initiates a
movement response. The direction of movement corresponds to the
average directions of its active neighbors perturbed by directional
noise. After the movement duration τact , the focal individual enters
the recovered state (R, purple).

Here, for simplicity, we calculate the link weights wi j of
the interaction solemnly based on the logarithmic distance,
while still accounting for visual occlusions by explicitly cal-
culating visual networks [14]. There is no link (wi j = 0) if a
neighbor j occupies a fraction of the visual field of the focal
individual i below the visual threshold θvis.

Following the logistic regression model, the link weight
wi j can be calculated as the probability of first response by
individual i to a single initial startle by individual j, as given
by the following equation:

wi j = 1

1 + exp[−β1 − β2 log10(li j )]
. (5)

Here, β1 and β2 are the fitting coefficients obtained previously
by performing a logistic regression on experimental data [21],
and li j = ‖�xi − �x j‖ is the Euclidean distance between indi-
viduals i and j. Due to the movement response of activated
individuals, their position vectors will evolve in time, and thus
also the relative distances will be time-dependent: li j = li j (t ).
Therefore the corresponding networks are dynamic and con-
tinuously recalculated during the contagion process.

C. Model parameters

All model parameters are listed in Table I. To be consistent
with previous experimental work and corresponding models
[13,17,21], we fix the values of a range of parameters. The
number of individuals N = 40 is set to the experimental

TABLE I. Model parameters with values fixed throughout this
study.

Symbol Description Value

N Number of individuals 40
θvis Visual threshold 0.02 rad
β1 Intercept −0.271
β2 LMD coefficient −2.737
rmax Maximal rate 102 s−1

�t Numerical time step 0.01 s
da Magnitude of activation dose 10−2

τact Activation time 1.0 s
δ Discount factor 0.1
θact Activation threshold Varied
v0 Constant speed Varied
α0 Initial movement direction Varied
σ0 Directional noise intensity Varied

value in Ref. [21], and the visual threshold θvis = 0.02 rad
is consistent with the previously chosen value. The
coefficients β1 = −0.271 and β2 = −2.737, are taken from
a logistic regression of first responders. The maximal rate
rmax = 102 s−1, numerical time step �t = 0.01 s, magnitude
of activation dose da = 10−2, and activation time τact = 1.0 s
in the behavioral contagion model are referred to [21]. The
discount factor δ = 0.1 provides a reasonable decay rate
for the cumulative dose. In addition to the parameters with
fixed values, the following parameters have been varied
throughout our simulations, the activation threshold θact,
by being set to a critical response threshold for each density
level, constant speed v0, initial movement direction α0 relative
to the group’s center of mass, and directional noise intensity
σ0. All distances are measured in terms of the body length
of the agents (long axis if the ellipsoid body). The ellipsoid
shape with a fixed aspect ratio of 0.4 is motivated by the
body form of fish, but the general result presented here do not
depend on a specific choice of the aspect ratio.

D. Coupling of behavioral contagion and movement dynamics

Previous models with static interaction networks
[13,17,21] account well for the initial stages of escape
cascades. However, the idealized assumption results in
the actual movement of individuals, with its consequences
for the interaction network, being entirely ignored. By
explicitly taking into account the coupling between
behavioral contagion and the corresponding movement
response, we formulate a model of dynamically evolving,
adaptive interaction networks [24] governing the dynamics of
collective escapes. Figure 2 shows spatiotemporal snapshots
of a single startle cascade generated by a group of 40
individuals (v0 = 5BL/s, α0 = 58.4◦, σ0 = 0.3). At the
initial time (t = 0.0 s), one individual starts out as an
active state (red), while the others are in a susceptible state
(gray). As the initially startled individual moves towards the
upper right, the link weights between the initially startled
individual and a subset of its neighbors increase due to the
decreasing distance, which leads to an increasing probability
of receiving activation signals. These neighbors will become
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FIG. 2. Spatiotemporal snapshots of a single startle cascade generated by a group of 40 individuals. The susceptible, active, and recovered
individuals are represented by gray, red, and purple ellipses, respectively.

more likely active if the cumulative dose exceeds the response
threshold (here we set θ = 0.1). When they initiate an escape
themselves, their movement directions approximately match
the one of the initially startled individual (t = 1.0 s). The
collective evasion spreads further over time (t = 2.0 s), with
the later activated individuals moving towards the upper
right corner, while the early activated individuals enter
the recovered state (purple) after a fixed activation time
τact = 1.0 s. Eventually, all activated individuals in the fish
group become recovered and stop moving (t = 3.0 s).

An important question is what are the control parameters
that are able to induce the phase transition from local to
global cascades in such systems. In previous studies with
static interaction networks, the response threshold θ (i.e., the
responsiveness to social cues) and average coupling strength
〈wi j〉 (i.e., the average link weights) are the two relevant
control parameters. Figure 3(a) shows the average and the
variance of cascade sizes as a function of the response
threshold. At low response thresholds, the cascade propagates
rapidly across the majority of the group and we observe
large cascades with almost all individuals participating. As
the threshold increases, susceptible individuals need to receive

more activation signals to be active, and the startles fail to
propagate. The average cascade size decreases sharply, and
eventually only small local cascades around the initially star-
tled individual can be observed. The variance of the cascade
size distribution has a maximum at the intermediate value
of response thresholds. The corresponding response thresh-
old represents the quasi-critical point (blue dashed line) of
the epidemic phase transition (dynamical percolation) in a
finite-sized system [25–27]. Around this point, the impact of
parameter changes, including variations in movement param-
eters we want to study here, will be maximal. In Fig. 3(b),
we show that the impact of increasing the average coupling
strength on cascading behavior is directly opposite to that of
the response threshold. At low coupling strength, the resulting
weak social signals are not sufficient for the cascade to propa-
gate. With increasing coupling the network structures become
more tightly connected, and the cumulative activation dose
of a susceptible individual neighboring an active one grows
faster, which results in an increasing frequency of large cas-
cades. Again, the maximum value in the variance of cascade
size indicates the critical coupling strength in a finite-sized
system. Note that with increasing system size the location
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FIG. 3. Phase transition from local to global cascades triggered by two control parameters. (a) The average and the variance of cascade
sizes as a function of the response threshold. (b) The average and the variance of cascade sizes as a function of the average coupling strength.
The blue dashed line corresponds to the quasi-critical point of the phase transition.

of the quasi-critical control parameters shifts, and the actual
critical point in the thermodynamic limit has to be estimated
from finite size scaling [28].

The influence of the above two control parameters on
collective evasion is apparent and rather straightforward to
understand, however, new parameters related to movement
dynamics may also have a non-negligible impact if we
consider adaptive, spatially embedded interaction networks
[29,30]. For instance, the constant speed v0 of individuals
can play a crucial role in behavioral contagion: If we define
a contact of two individuals as instances where they are in
close proximity, within a well-defined distance threshold, then
a slow individual will be in contact with few neighbors within
its activation time, but with each of them it will have long
interaction times in comparison to a fast individual, which
can potentially establish a larger number of rather short-lived
contacts. Another potential parameter is the initial movement
direction α0, because an active individual startling at the
periphery of the group will establish stronger connections
with more individuals if it moves towards the group’s center
of mass. Conversely, the connections with other individuals
become weaker, if the focal individual moves out of the group
(i.e., away from the group’s center of mass), which in turn
should have an inhibitory effect on behavioral cascades. In
addition, we may also consider “errors” in copying the startle
direction controlled by a noise intensity σ0, which can also
be an important factor. A higher noise will actually inhibit
the alignment of startle movements of different individuals,
but its impact on behavioral contagion may vary depending
on movement characteristics. The visualizations of example
simulations for the above parameters are provided in Supple-
mental Material [31]. Therefore we will investigate how the
three parameters governing the movement response: startle
speed, initial directionality, and directional noise affect col-
lective evasion in the following section.

E. Effects of movement parameters on behavioral cascades

The average cascade size has been confirmed to be mainly
modulated by changes in typical inter-individual distance

[17]. Therefore we construct fish groups of N = 40 individ-
uals (as in experiments [21]), with three density levels, by
initially distributing the individuals in rectangular areas of
size 20 × 20BL2 (low density, ρ = 0.1BL−2), 15 × 15BL2

(medium density, ρ = 0.18BL−2), and 10 × 10BL2 (high
density, ρ = 0.4BL−2), respectively. To estimate the critical
point of phase transition from local to global cascades at
each density, we repeat the simulation 50 times for differ-
ent networks at each candidate response threshold, which
generates the distribution of cascade sizes. From this, we
calculate the corresponding variance of cascade size, and
the quasi-critical point in a finite-sized system corresponds to
the value of the response threshold with a maximum variance.
At the critical response threshold, variations of other control
parameters will have the largest impact on the cascade sizes,
thus these are the optimal thresholds for investigating the role
of movement-related parameters on the behavior of the sys-
tem. Figure 4 shows the determination of activation thresholds
(i.e., the critical response thresholds) at different density lev-
els (low density: θact = 0.035, medium density: θact = 0.07,
high density: θact = 0.18). A maximum of the cascade size
variance can be clearly observed for all densities, and the
corresponding activation threshold grows with the increase in
density. Given that the average coupling strength of the group
with a higher density is larger, it is easier to trigger global
cascades under the same response threshold, hence the acti-
vation threshold needs to be increased to produce more local
cascades. The distribution of cascade sizes at the activation
threshold indicates that approximately half of the cascades
remain relatively small, while the other half spreads across
the majority of the group. It is notable that the bimodality of
the cascade size distribution appears to become stronger with
increasing density level.

By setting activation thresholds for the three different den-
sity levels, we investigate the effects of constant speed v0,
initial movement direction α0, and noise intensity σ0 on av-
erage cascade size in Figs. 5–8. Here, constant speed v0 is
set as 2BL/s (slow speed), 12BL/s (medium speed), 22BL/s
(fast speed); initial movement direction α0 is assigned as 0◦
(moving directly towards the group’s center of mass), ±90◦
(perpendicular to the vector towards the group’s center of
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FIG. 4. Determination of activation thresholds (i.e., the critical response thresholds) at different density levels. (a) Low density. (b) Medium
density. (c) High density. The inset shows the distribution of cascade sizes at the activation threshold.

mass), 180◦ (moving directly away from the group’s center of
mass); and noise intensity σ0 corresponds to 10−2 (low noise),
100 (medium noise), 102 (high noise).

In Fig. 5, the average cascade size as a function of
constant speed v0 at low, medium, and high density
levels is shown. Note that when the initially startled
individual moves towards the group’s center of mass
(|α0| = 0◦), the propagation of behavioral cascades varies

significantly across different density levels and noise
intensities (Fig. 5 top row), therefore we performed here
a more detailed analysis with more sampling points with
respect to the constant speed as a control parameter (see
Fig. 6).

For low and medium densities, and low and medium
noise (σ0 = 10−2 and 100), we observe a peak of the average
cascade size at relatively low speeds. For moderate noise in-

FIG. 5. Average cascade size as a function of constant speed v0 at low, medium, and high density levels. For different noise intensities
(from left to right), σ0 = 10−2, 100, and 102, and for different initial movement directions (from top to bottom), |α0| = 0◦, 90◦, and 180◦.
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FIG. 6. Average cascade size as a function of constant speed v0 at low, medium, and high density levels. For different noise intensities
(from left to right), σ0 = 10−2, 100, and 102, and for the initial movement direction towards the group’s center of mass, |α0| = 0◦.

tensities, the propagation direction of active individuals tends
to follow the initial startle direction. This constrains their
influence primarily to individuals along the average
movement path but inhibits the diffusion of the contagion
along other directions. At low speeds, startled individuals have
longer times within the interaction range of their neighbors,
allowing behavioral cues to spread more effectively to nearby
individuals. At faster speeds, shorter close contacts inhibit

behavioral contagion, resulting in smaller average cascade
sizes. Thus, the average cascade size becomes maximal at
relatively slow speeds. For low and medium density and
high noise (σ0 = 102), the average cascade size increases
with startling speed and reaches saturation (mostly global
cascades), since fast movement combined with directional
randomness facilitates effective diffusion of behavioral
contagion across the group.

FIG. 7. Average cascade size as a function of initial movement direction α0 at low, medium, and high density levels. For different noise
intensities (from left to right), σ0 = 10−2, 100, and 102, and for different constant speeds (from top to bottom), v0 = 2BL/s, 12BL/s, and
22BL/s.
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FIG. 8. Average cascade size as a function of noise intensity σ0 at low, medium, and high density levels. For different initial movement
directions (from left to right), |α0| = 0◦, 90◦, and 180◦, and for different constant speeds (from top to bottom), v0 = 2BL/s, 12BL/s, and
22BL/s.

At high densities, the average cascade size decreases in a
sigmoid function for all noise intensities. Here, individuals
are densely clustered, thus the spread of behavioral cascades
is primarily determined by the initial physical proximity. Re-
gardless of the changes in noise intensity, a startled individual
has a high probability of influencing multiple neighbors, so
noise has less impact on behavioral contagion. At low speeds,
escape signals can easily propagate across the group, result-
ing in larger global cascades. As the speed increases, active
individuals are likely to leave the group rather quickly, which
reduces the time within the interaction range of susceptible
neighbors, thereby the cascade spread is less effective. This
results in the observed sigmoid-like dependence of the conta-
gion on movement speed.

When the initially startled individual moves in a direc-
tion other than towards the group’s center of mass (|α0| =
90◦ and 180◦), the average cascade size appears to decrease
monotonously with increasing speed (Fig. 5 middle and bot-
tom rows). Lower densities weaken the sensitivity of the cas-
cade size to speed, because the dispersed spatial distribution
limits the number of susceptible neighbors for close con-
tacts. Besides, higher noise intensities promote the spreading
of behavioral cascades, since random movement directions
increase the probability that activated individuals approach
susceptible neighbors. In summary, these results suggest that

the increasing of the constant speed in most cases has an
inhibitory effect on the propagation of behavioral cascades.

Turning now to the impact of initial movement direction
α0 on behavioral propagation in Fig. 7. Overall, the average
cascade size decreases significantly as the initially startled
individual changes from moving towards the group’s center
of mass (|α0| = 0◦) to moving away from it (|α0| = 180◦). For
the case of slow constant speed (v0 = 2BL/s), lower densities
have a weakening impact on the relationship between average
cascade size and initial movement direction (lower slope of
the lines in Fig. 7, top row). This is because activated indi-
viduals moving at slow speeds have difficulty in contacting
more distant neighbors due to the large inter-individual dis-
tance at low density levels. We also note that a similar effect
exists for higher noise intensities, as the increasing directional
stochasticity, results in a diffusive spread of activation, which
makes behavioral contagion less sensitive to (initial) direc-
tionality of the escape movement. In contrast, for faster speeds
(v0 = 12BL/s and 22BL/s), lower densities instead increase
the average cascade size for the same movement direction of
the initially startled individual (e.g., |α0| = 0◦, Fig. 7). In this
case, activated individuals moving at fast speeds will not leave
the group quickly, which further increases the probability of
cascade propagation. If the noise intensity is relatively high,
activated individuals have a wider range of close contacts with

013300-8



ESCAPE CASCADES AS A BEHAVIORAL CONTAGION … PHYSICAL REVIEW RESEARCH 7, 013300 (2025)

susceptible neighbors in random directions, and this makes the
growth in average cascade size more pronounced. The above
findings demonstrate that the cascade size depends strongly
on the movement direction of the initially startled individual.

Last, as shown in Fig. 8, we demonstrate how different
noise intensities σ0 affect the propagation of behavioral cas-
cades. If the constant speed is relatively slow (v0 = 2BL/s),
the effect of noise intensity on the average cascade size is
related to the movement direction of the initially startled
individual. As the initially startled individual changes from
moving towards the group’s center of mass (|α0| = 0◦) to
moving away from it (|α0| = 180◦), higher noise intensities
gradually shift from inhibiting the behavioral contagion to
facilitating it. The fact is that more randomness prevents ef-
fective propagation in the movement direction of the initially
startled individual. As a result of this diffusion effect, the
average cascade size can be weakened if the active individual
moves towards the group’s center of mass, but enhanced for
the case away from it. However, if the speed becomes faster
(v0 = 12BL/s and 22BL/s), independent on the movement
direction of the initially startled individual, we observe larger
average cascade sizes. This kind of facilitation becomes more
significant with decreasing density level, since activated indi-
viduals with faster speeds will quickly leave the spatial range
of the group if the density is higher, which causes the effect of
directional randomness to become weaker. From this, it can be
concluded that large variability in the direction of individual
escape movements (rotational noise), i.e., low escape direc-
tion alignment, will typically promote the spread of behavioral
contagion through spatial groups.

III. CONCLUSION

In this paper, we propose a spatially explicit, agent-based
model for the coupling of the behavioral contagion process
to the (adaptive) interaction network dynamics to study col-
lective evasion behavior in fish groups. In particular, in the
vicinity of the critical response threshold for the phase transi-
tion of the system from local to global cascades, we find that
movement parameters (startle speed, initial directionality, and
directional noise) play a crucial role in regulating the propa-
gation of behavioral cascades. Specifically, we reveal that in
most cases behavioral contagion is suppressed by increasing
movement speed. However, for certain densities and noise
intensities, movement speed can also promote the contagion
process if the initially startled individual moves towards the
group’s center of mass. The cascade size strongly depends
on the direction of movement of the initially startled individ-
ual. It is maximal for initial movements towards the group’s
center of mass, and decreases with increasing tendency to
move away. At slow speeds, lower densities and higher noise
intensities make behavioral contagion less sensitive to the
initial movement direction. In this scenario, increasing speed
results on average in larger cascades. Large variability in the
direction of individual escape movements (rotational noise)
typically promotes the spread of behavioral cascades through
spatial groups, and its impact becomes more pronounced as
the density decreases. However, higher noise intensities lead
to a reduction in cascade size at slow speeds if the initially
startled individual moves towards the group’s center of mass.

This complex interplay of different movement parameters
demonstrates that, while in general, faster speeds, movement
away from the group, and lower noise intensities have an
inhibiting effect on the contagion process, the overall move-
ment dynamics have a highly nontrivial impact on collective
evasion behavior.

This work advances our understanding of rapid coor-
dinated responses and collective information processing in
mobile groups, and provides valuable clues to further control
and management of collective behavior. In emergency situa-
tions (e.g., fires [32], earthquakes [33], and terrorist attacks
[34]), the collective motion of large-scale crowds may sud-
denly change during the evacuation process. For example, if a
pedestrian immediately changes direction after finding a safer
escape route or perceives the danger, his or her surrounding
neighbors in a panic will have a high probability of imitating
this behavior [35]. However, the sudden change in behavior
may disrupt the order of collective motion, give rise to more
physical collisions, and even cause serious stampedes. There-
fore the potentially disastrous spread of behavioral cascades
can be reduced by designing effective information transmis-
sion and guidance strategies to improve the efficiency and
safety of crowd evacuation. To adapt to dynamic changes in
surrounding environments and achieve coordinated maneu-
vers within swarms of robots when handling complex tasks
[36,37], continuous adjustment of movement directions is
required to support path optimization and decision making
[38]. Inspired by the principle of collective evasion behavior
in fish groups, we can use dynamic parameters to control the
movement direction in swarming robots. For example, when
the individual closest to an obstacle perceives the positional
information, we can use a control algorithm to adjust its move-
ment direction and constant speed, and spread this behavior
to a part or the whole group for obstacle avoidance. This
kind of bionic swarm robotics approach has the advantages
of high adaptability, efficiency, and flexibility, and can better
deal with the requirements of challenging tasks in complex
environments.

Overall, this work explores the dynamic mechanisms of
collective escape behavior in mobile animal groups, reveals
the important influence of movement parameters on behav-
ioral propagation, and provides new perspectives into our
understanding of collective behavior. In future work, we plan
to further improve the motion equations (e.g., force-based
[30]) of individuals to describe the interactions with other in-
dividuals and the environment more accurately, which allows
precise simulation and prediction for the dynamic evolution
of behavioral cascades. It is also worth exploring the effect
of other kinetic parameters on behavioral contagion and how
these parameters can be adjusted to optimize group coordina-
tion and adaptability to help effectively organize and control
collective evasion behavior. Importantly, the visual network
needs to be recalculated at each time step due to movement
behavior, which results in high computational costs. Hence,
subsequent work could try to explore more efficient algo-
rithms or optimize the calculation process to improve the
real-time performance of this model. We expect that our work
will inspire more general models of behavioral contagion
and pave the way for deeper insights into rapid coordinated
collective responses in biological and social systems.
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